
Nathan Marz
Twitter

Distributed and fault-tolerant realtime computation

Storm

Basic info

• Open sourced September 19th

• Implementation is 15,000 lines of code

• Used by over 25 companies

• >2900 watchers on Github (most watched
JVM project)

• Very active mailing list

• >3000 messages

• >800 members

Before Storm

Queues Workers

Example

(simplified)

Example

Workers schemify tweets
and append to Hadoop

Example

Workers update statistics on URLs by
incrementing counters in Cassandra

Example

Use mod/hashing to make sure same
URL always goes to same worker

Scaling
Deploy

Reconfigure/redeploy

Problems

• Scaling is painful

• Poor fault-tolerance

• Coding is tedious

What we want

• Guaranteed data processing

• Horizontal scalability

• Fault-tolerance

• No intermediate message brokers!

• Higher level abstraction than message passing

• “Just works”

Storm

Guaranteed data processing

Horizontal scalability

Fault-tolerance

No intermediate message brokers!

Higher level abstraction than message passing

“Just works”

Stream
processing

Continuous
computation

Distributed
RPC

Use cases

Storm Cluster

Storm Cluster

Master node (similar to Hadoop JobTracker)

Storm Cluster

Used for cluster coordination

Storm Cluster

Run worker processes

Starting a topology

Killing a topology

Concepts

• Streams

• Spouts

• Bolts

• Topologies

Streams

Unbounded sequence of tuples

Tuple Tuple Tuple Tuple Tuple Tuple Tuple

Spouts

Source of streams

Spout examples

• Read from Kestrel queue

• Read from Twitter streaming API

Bolts

Processes input streams and produces new streams

Bolts

• Functions

• Filters

• Aggregation

• Joins

• Talk to databases

Topology

Network of spouts and bolts

Tasks

Spouts and bolts execute as
many tasks across the cluster

Task execution

Tasks are spread across the cluster

Task execution

Tasks are spread across the cluster

Stream grouping

When a tuple is emitted, which task does it go to?

Stream grouping

• Shuffle grouping: pick a random task

• Fields grouping: mod hashing on a
subset of tuple fields

• All grouping: send to all tasks

• Global grouping: pick task with lowest id

Topology

shuffle

[“url”]

shuffle

shuffle

[“id1”, “id2”]

all

Streaming word count

TopologyBuilder is used to construct topologies in Java

Streaming word count

Define a spout in the topology with parallelism of 5 tasks

Streaming word count

Split sentences into words with parallelism of 8 tasks

Consumer decides what data it receives and how it gets grouped

Streaming word count

Split sentences into words with parallelism of 8 tasks

Streaming word count

Create a word count stream

Streaming word count

splitsentence.py

Streaming word count

Streaming word count

Submitting topology to a cluster

Streaming word count

Running topology in local mode

Demo

Distributed RPC

Data flow for Distributed RPC

DRPC Example

Computing “reach” of a URL on the fly

Reach

Reach is the number of unique people
exposed to a URL on Twitter

Computing reach

URL

Tweeter

Tweeter

Tweeter

Follower

Follower

Follower

Follower

Follower

Follower

Distinct
follower

Distinct
follower

Distinct
follower

Count Reach

Reach topology

Reach topology

Reach topology

Reach topology

Keep set of followers for
each request id in memory

Reach topology

Update followers set when
receive a new follower

Reach topology

Emit partial count after
receiving all followers for a

request id

Demo

Guaranteeing message
processing

“Tuple tree”

Guaranteeing message
processing

• A spout tuple is not fully processed until all
tuples in the tree have been completed

Guaranteeing message
processing

• If the tuple tree is not completed within a
specified timeout, the spout tuple is replayed

Guaranteeing message
processing

Reliability API

Guaranteeing message
processing

“Anchoring” creates a new edge in the tuple tree

Guaranteeing message
processing

Marks a single node in the tree as complete

Guaranteeing message
processing

• Storm tracks tuple trees for you in an
extremely efficient way

Transactional topologies

How do you do idempotent counting with an
at least once delivery guarantee?

Won’t you overcount?

Transactional topologies

Transactional topologies solve this problem

Transactional topologies

Built completely on top of Storm’s primitives
of streams, spouts, and bolts

Transactional topologies

Enables fault-tolerant, exactly-once messaging semantics

Transactional topologies

Batch 1 Batch 2 Batch 3

Transactional topologies

Process small batches of tuples

Batch 1 Batch 2 Batch 3

Transactional topologies

If a batch fails, replay the whole batch

Batch 1 Batch 2 Batch 3

Transactional topologies

Once a batch is completed, commit the batch

Batch 1 Batch 2 Batch 3

Transactional topologies

Bolts can optionally be “committers”

Commit 1

Transactional topologies

Commits are ordered. If there’s a failure during
commit, the whole batch + commit is retried

Commit 1 Commit 2 Commit 3 Commit 4 Commit 4

Example

Example

New instance of this object
for every transaction attempt

Example

Aggregate the count for
this batch

Example

Only update database if
transaction ids differ

Example

This enables idempotency since
commits are ordered

Example

(Credit goes to Kafka devs
 for this trick)

Transactional topologies

Multiple batches can be processed in parallel,
but commits are guaranteed to be ordered

• Requires a more sophisticated source
queue than Kestrel or RabbitMQ

• storm-contrib has a transactional spout
implementation for Kafka

Transactional topologies

Example #1

Crawler

Example #1

Example #2

Twitter Web Analytics

Example #2

Example #3

Storm as a “database”

Example #3

Storm UI

Storm on EC2

https://github.com/nathanmarz/storm-deploy

One-click deploy tool

https://github.com/nathanmarz/storm-deploy
https://github.com/nathanmarz/storm-deploy

Starter code

https://github.com/nathanmarz/storm-starter

Example topologies

https://github.com/nathanmarz/storm-deploy
https://github.com/nathanmarz/storm-deploy

Documentation

Ecosystem

• Scala, JRuby, and Clojure DSL’s

• Kestrel, Redis, AMQP, JMS, and other spout adapters

• Multilang adapters

• Cassandra, MongoDB integration

Questions?

http://github.com/nathanmarz/storm

http://github.com/nathanmarz/storm
http://github.com/nathanmarz/storm

Future work

• State spout

• Storm on Mesos

• “Swapping”

• Auto-scaling

• Higher level abstractions

Implementation

KafkaTransactionalSpout

Implementation

all

all

all

Implementation

all

all

all

TransactionalSpout is a subtopology
consisting of a spout and a bolt

Implementation

all

all

all

The spout consists of one task that
coordinates the transactions

Implementation

all

all

all

The bolt emits the batches of tuples

Implementation

all

all

all

The coordinator emits a “batch” stream
and a “commit stream”

Implementation

all

all

all

Batch stream

Implementation

all

all

all

Commit stream

Implementation

all

all

all

Coordinator reuses tuple tree framework to detect
success or failure of batches or commits and replays

appropriately

